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ABSTRACT 
 
 A novel coordinate rotation digital computer (CORDIC)-based fast radix-2 algorithm for computation of 

discrete cosine transformation (DCT) . The proposed algorithm has some distinguish advantages, such as Cooley-
Tukey fast Fourier transformation (FFT)-like regular data flow, uniform post-scaling factor, in-place computation 
and arithmetic sequence rotation angles. Compared to existing DCT algorithms, this proposed algorithm has lower 
computational complexity. Furthermore, the proposed algorithm is highly scalable, modular, regular, and suitable for 
pipelined VLSI implementation. 
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1.  INTRODUCTION 
    
       A discrete cosine transform (DCT) expresses 

a finite sequence of data points in terms of a sum of 
cosine functions oscillating at different frequencies. 
DCTs are important to numerous applications in 
science and engineering, from loss compression of 
audio and images to spectral methods for the 
numerical solution of partial differential equations. 
The use of cosine rather than sine functions is critical 
in these applications: for compression, it turns out that 
cosine functions are much more efficient (as described 
below, fewer functions are needed to approximate a 
typical signal), whereas for differential equations the 
cosines express a particular choice of boundary 
conditions.In particular, a DCT is a Fourier-related 
transform similar to the discrete Fourier transform 
(DFT), but using only real numbers. DCTs are 
equivalent to DFTs of roughly twice the length, 
operating on real data with even symmetry (since the 
Fourier transform of a real and even function is real 
and even), where in some variants the input and/or 
output data are shifted by half a sample. There are 
eight standard DCT variants, of which four are 

common. The most common variant of discrete cosine 
transform is the type-II DCT, which is often called 
simply "the DCT", its inverse, the type-III DCT, is 
correspondingly often called simply "the inverse 
DCT" or "the IDCT".Two related transforms are the 
discrete sine transforms (DST), which is equivalent to 
a DFT of real and odd functions, and the modified 
discrete cosine transforms (MDCT), which is based on 
a DCT of overlapping data. Like any Fourier-related 
transform, discrete cosine transforms (DCTs) express 
a function or a signal in terms of a sum of sinusoids 
with different frequencies and amplitudes. Like the 
discrete Fourier transforms (DFT), a DCT operates on 
a function at a finite number of discrete data points. 
The obvious distinction between a DCT and a DFT is 
that the former uses only cosine functions, while the 
latter uses both cosines and sines (in the form of 
complex exponentials). However, this visible 
difference is merely a consequence of a deeper 
distinction: a DCT implies different boundary 
conditions than the DFT or other related transforms. 
The Fourier-related transforms that operate on a 
function over a finite domain, such as the DFT or 
DCT or a Fourier series, can be thought of as 
implicitly defining an extension of that function 
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outside the domain. That is, once you write a function 
as a sum of sinusoids, you can evaluate that sum at 
any , even for where the original was not specified. 
The DFT, like the Fourier series, implies a periodic 
extension of the original function. A DCT, like a 
cosine transform, implies an even extension of the 
original function. DCT, like a cosine transform, 
implies an even extension of the original function. 
Illustration of the implicit even/odd extensions of 
DCT input data, for N=11 data points (red dots), for 
the four most common types of DCT (types I-IV). 
However, because DCTs operate on finite, discrete 
sequences, two issues arise that do not apply for the 
continuous cosine transform.First, one has to specify 
whether the function is even or odd at both the left 
and right boundaries of the domain (i.e. the min-n and 
max-n boundaries in the definitions below, 
respectively).  

 
2.  THEORY OF CORDIC ALGORITHM 

A CORDIC-based radix-2 fast DCT algorithm. 
Based on the proposed algorithm, signal flows of 
DCTs and inverse DCTs (IDCTs) are developed and 
deduced sing their orthogonal properties, respectively. 
Similar to the Cooley-Turkey fast Fourier 
transformation (FFT) algorithm, the proposed 
algorithm can generate the next higher- rider DCT 
from two identical lower-order DCTs. Furthermore, it 
has some distinguish advantages, such as FFT-like 
regular data flow, uniform post-scaling factor, in-
place computation and arithmetic-sequence rotation 
angles. By using the unfolding CORDIC technique, 
this algorithm can overcome the problem of difficult 
to realize pipeline that in conventional CORDIC 
algorithms. This results in a pipeline and high-speed 
VLSI   implementation. Compared to existing DCTs, 
the proposed algorithm has low computational 
complexity, and is highly scalable, modular, regular, 
and able to admit efficient pipelined implementation. 
In addition, this letter also provides an easy way to 
implement the reconfigurable or unified architecture 
for DCTs and IDCTs using the orthogonal property. 
The general signal-flow graph for the proposed fast 
DCT algorithm given, while the signal-flow graphs of 
2-point DCT, 4-point DCT, and 8-point DCT are 
respectively represented. Where the angles in the 
circles are used to represent CORDICs with this 
rotation angles. There are two separate -point DCTs 
and one CORDIC array. As mentioned above, the 
CORDIC array has CORDICs with arithmetic-
sequence rotation angles. The inputs are addressed in 
bit-reverse order and the outputs are addressed in 
natural order. It also supports in-place computation 
like the FFT.  

 

For special applications, a double-angle formula 
can be used to reduce CORDIC types. Hence, the 
architecture based on the signal flow is highly 
modular. Furthermore, the modified unfolded 
CORDIC, which presented in our previous work, can 
be used to speed up computations and overcome 
recursive problems in conventional CORDICs. 
Similarly, the fast algorithm for the -point IDCT can 
be deduced like the fast DCT algorithm. Alternatively, 
it can be obtained more easily using their orthogonal 
property. As is known, the DCT and IDCT are 
orthogonal transformations, and the signal flow of the 
-point IDCT can be easily obtained by inverting the 
transfer function of each building block and reversing 
the signal flow direction.  

 
Figure.1.Signal flow of a 4-point fast discrete 

cosine transformation (DCT) 
 

 
 

Figure.2.Signal flow of an 4-point fast discrete                           
cosine transformation Without scaling factor 
 

Figure.3.Signal flow of an 8-point fast discrete                                       
cosine transformation (DCT) 
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3. SYSTEM EXPLANATION 
 
For an 8-point signal, x(n) , the DCT is defined as: خሾAሿൌࢻሾAሿ෍ ሾ࢞�ሿg.ࡺିٴ Ū�ୀ૙ ቈሺ৩�൅ŪሻA࣊৩ࡺ ቉,ሺA ൌ૙,Ū, ৩, …Ǥ,ࡺെŪሻ 

 
 
Neglecting the post-scaling factor without loss of 

generality, the main operation of an -point DCT 
denoted as can be written as 

ሾAሿൌ෍خ  ሾ࢞�ሿg.ٴቈሺ৩�൅ŪሻA࣊৩ࡺ ቉,A ൌ૙,… ࡺെŪିࡺ, Ū�ୀ૙  

ٴ.ሾAሿൌ৩gخ  ൬࣊ A৩ࡺ൰෍ ࡺቈሺ৩�൅ŪሻA࣊ٴ.ሾ�ሿgࡸ࢞ ቉ቀࡺ৩ቁି Ū� ૙ି൅৩࢏ٴ�൬࣊ A৩ࡺ൰෍ ࡺ�ቈሺ৩�൅ŪሻA࣊࢏ٴሾ�ሿࡴ࢞ ቉ቀࡺ৩ቁି Ū� ૙ି  

ٴ.ሾAሿൌ৩gخ  ቀ࣊ A৩ࡺቁ∑ ࡺቂሺ৩�ାŪሻA࣊ٴ.ሾ�ሿgࡸ࢞ ቃ൅ቀࡺ৩ቁି Ū�ୀ૙৩࢏ٴ�ቀ࣊ A৩ࡺቁ∑ ሺെŪሻ� ৩ࡺቈሺ৩�ାŪሻቀٴ.ሾ�ሿgࡴ࢞ Aିቁ࣊ࡺ ቉ቀࡺ৩ቁି Ū�ୀ૙ ∑ቁࡺ�ቀ࣊A৩࢏ٴെAሿൌെ৩ࡺሾخ  ࡺቂሺ৩�ାŪሻA࣊ٴ.ሾ�ሿgࡸ࢞ ቃ൅ቀࡺ৩ቁି Ū�ୀ૙৩g.ٴ ቀ࣊ A৩ࡺቁ∑ ሺെŪሻ� ৩ࡺቈሺ৩�ାŪሻቀٴ.ሾ�ሿgࡴ࢞ Aିቁ࣊ࡺ ቉ቀࡺ৩ቁି Ū�ୀ૙   

 
CORDIC or Coordinate Rotation Digital Computer 

is a simple and hardware-efficient algorithm for the 
implementation of various elementary, especially 
trigonometric, functions. Instead of using Calculus 
based methods such as polynomial or rational 
functional approximation, it uses simple shift, add, 
subtract and table look-up operations to achieve this 
objective. The CORDIC algorithm was first proposed 
by Jack E Volder in 1959. It is usually implemented in 
either Rotation mode or Vectoring mode. In either 
mode, the algorithm is rotation of an angle vector by a 
definite angle but in variable directions. This fixed 
rotation in variable direction is implemented through 
an iterative sequence of addition/subtraction followed 
by bit-shift operation. 

   
 The final result is obtained by appropriately scaling 

the result obtained after successive iterations. Owing 
to its simplicity the CORDIC algorithm can be easily 
implemented on a VLSI system. Hardware 
requirement and cost of CORDIC processor is less as 

only shift registers, adders and look-up table (ROM) 
are required  Number of gates required in hardware 
implementation, such as on an FPGA, is minimum as 
hardware complexity is greatly reduced compared to 
other processors such as DSP multipliers  It is 
relatively simple in design  No multiplication and only 
addition, subtraction and bit-shifting operation ensures 
simple VLSI implementation Delay involved during 
processing is comparable to that during the 
implementation of a division or square-rooting 
operation Either if there is an absence of a hardware 
multiplier (e.g. uC, uP) or there is a necessity to 
optimize the number of logic gates    

 
The algorithm was basically developed to offer 

digital solutions to the problems of real-time 
navigation in B-58 bomber John Walther extended the 
basic CORDIC theory to provide solution to and 
implement a diverse range of functions This algorithm 
finds use in 8087 Math coprocessor  the HP-35 
calculator radar signal processors and robotics. 
CORDIC algorithm has also been described for the 
calculation of DFT DHT, Chirp Z-transforms filtering 
Singular value decomposition and solving linear 
systems .Most calculators especially the ones built by 
Texas Instruments and Hewlett-Packard use CORDIC 
algorithm for calculation of transcendental Functions.   

 
Sin θ  Input angle CORDIC Processor Cos θ  

 
Figue. 4Block Diagram of a CORDIC processor 

 
The general signal-flow graph for the proposed fast 

DCT algorithm given, while the signal-flow graphs of 
2-point DCT, 4-point DCT, and 8-point DCT are 
respectively represented. Where  the angles in the 
circles are used to represent CORDICs with this 
rotation angles.  

 
There are two separate -point DCTs and one 

CORDIC array. As mentioned above, the CORDIC 
array has CORDICs with arithmetic-sequence rotation 
angles. The inputs are addressed in bit-reverse Order 
and the outputs are addressed in natural order. It also 
supports in-place computation like the FFT. Regular 
and pure feed-forward data paths of the signal flow 
make them suitable for Pipelined VLSI 
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implementation. For special applications, a double-
angle formula can be used to reduce CORDIC types.  
Hence, the architecture based on the signal flow is 
highly modular. 
 
 The DCT and IDCT are orthogonal 
transformations and the signal flow of the -point 
IDCT can be easily obtained by inverting the transfer 
function of each building block and reversing the 
signal flow direction.     CORDIC algorithm has also 
been described for the calculation of DFT, DHT Chirp 
Z-transforms filtering singular value decomposition 
,and solving linear systems. Most calculators 
especially the ones built by Texas Instruments and 
Hewlett-Packard use CORDIC algorithm for 
calculation of transcendental functions. 
 

4. SIMULATION WAVEFORM 
 

TWO POINT DCT: 
 

 
 

FOUR POINTS WITHOUT SCALING FACTOR: 
 

 
 
 
FOUR POINT DCT: 
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 EIGHT POINT DCT: 
                                                                        

 
 
 
5. CONCLUSION 
              We propose a novel CORDIC-based radix-2 
fast DCT algorithm. This algorithm can generate the 
next higher order DCT from two identical lower-orders 
DCTs. Compared to existing DCT algorithms  
proposed algorithm has several distinct advantages, 
such as low computational complexity, and being 
highly scalable, modular, regular, and able to admit 
efficient pipelined implementation.Furthermore, the 
proposed algorithm also provides an easy way to 
implement a reconfigurable or unified architecture for 
DCTs and IDCTs. The general signal-flow graph for 
the  fast DCT algorithm given, while the signal-flow 
graphs of 2-point DCT, 4-point DCT, and 8-point DCT 
are respectively represented. Where  the angles in the 
circles are used to represent CORDICs with this 
rotation angles. There are two separate -point DCTs and 
one CORDIC array. As mentioned above, the CORDIC 
array has CORDICs with arithmetic-sequence rotation 
angles. 

 
 
6. FUTURE ENHANCEMENT 

         Implementation of CORDIC based Inverse 
Discrete Cosine Transform will be done. 
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